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Abstract. A renormalization scheme for interacting fermionic systems is presented where the renormaliza-
tion is carried out in terms of the fermionic degrees of freedom. The scheme is based on continuous unitary
transformations of the Hamiltonian which stays hermitian throughout the renormalization flow, whereby
any frequency dependence is avoided. The approach is illustrated in detail for a model of spinless fermions
with nearest neighbour repulsion in one dimension. Even though the fermionic degrees of freedom do not
provide an easy starting point in one dimension favorable results are obtained which agree well with the
exact findings based on Bethe ansatz.

PACS. 05.10.Cc Renormalization group methods – 71.10.Pm Fermions in reduced dimensions –
71.10.AyFermi-liquid theory and other phenomenological models

1 Introduction

With the discovery of high temperature superconductiv-
ity in layered cuprates of perovskite type [1] and the sub-
sequent most intensive theoretical considerations of this
intriguing phenomenon (see e.g. Refs. [2,3]) it has become
apparent that a reliable approach to strongly interacting
fermionic systems is lacking. So the efforts to formulate the
very successful concept of renormalization [4] also for ex-
tended interacting fermionic systems have been intensified
considerably during the last decade, see e.g. reference [5].
By now the literature on this approach is so wide that it is
not possible to provide an exhaustive list. This underlines
the importance that is accorded to this topic.

So far a number of renormalizing schemes has been
applied to two-dimensional Hubbard-type models which
are relevant for high temperature superconductivity [6–8].
These schemes rely conceptually on diagrammatic pertur-
bation theory in the interaction strength. They are non-
perturbative in the sense that infinite orders of the interac-
tion are kept; the necessary truncation concerns terms of
a certain structure, e.g. six points correlations, not terms
of a certain order in the interaction. The Fermi surface
is discretized and the various scattering couplings across
the Fermi sea are suitably parametrized. It is possible to
detect whether or not the renormalized couplings decrease
of diverge in the course of the flow. In this way, robust ev-
idence for the occurrence of d-wave superconductivity was
found. The corresponding couplings diverge for certain
values of doping and interaction. So far, however, no cal-
culations exist for dynamical correlations like the ARPES
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response at finite energies and wave vectors (measured
relative to the Fermi surface) as required for the under-
standing of the experimental findings. This is due to the
great complexity of the problem which requires – among
other difficulties – to follow the flow of the observables as
well, see for instance the appendix in reference [8]. For an
impurity in a spinless Luttinger liquid a spectral density
at all energies was computed by a one-particle irreducible
renormalization approach neglecting, however, the renor-
malization of the two-particle vertex [9].

Starting from a flow equation approach as proposed
by Wegner [10] and quite similarly by G�lazeck and
Wilson [11,12] a renormalizing scheme based on con-
tinuous unitary transformations (CUTs) has been pro-
posed [13]. By an appropriately chosen unitary transfor-
mation an effective Hamiltonian Heff is obtained. The
transformation is tuned in such a way that Heff conserves
the number of quasi-particles. Due to this property the cal-
culation of dynamical correlation function for all energies
becomes possible as was shown for spin ladders [14]. For
this reason, we consider the renormalizing CUT approach
to have a particularly great potential. This expectation is
supported decisively by recent work on quantum chemical
systems [15] where White could show that the numerical
application of a continuous unitary transformation similar
to the one used in reference [13] and here leads to excellent
results.

It is the aim of the present work to explain the techni-
cal details of the calculations announced in reference [13].
To this end, intermediate results will be shown. We hope
that the available data will make it possible to conceive
also analytical treatments which capture the essential
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physics. The medium-term objective is to generalize the
renormalizing CUT approach to more realistic models. A
demanding challenge is to treat the dimensional crossover
between one- and two-dimensional interacting fermionic
models. This is of great experimental relevance since the
physical systems existing in nature are at best quasi-one-
dimensional, i.e. strongly anisotropic, so that the higher
dimensionality enters always at a certain stage.

Two dimensions are the most demanding case for the
theoretical description of strong correlations. In three
dimensions the powerful Fermi liquid theory is well es-
tablished which is based on the observation that the
quasi-particles as such yield a good description of the
low-lying excitations (see e.g. [16]). The interaction be-
tween the quasi-particles is not essential. In one dimension
on the other hand, the collective plasmon modes dominate
the low-energy physics completely so that the fermionic
Hamiltonian can be mapped to a bosonic one represent-
ing so-called Luttinger liquids (see e.g. [17,18]). This phe-
nomenon can be seen as a binding (or anti-binding) of
a pair consisting of a hole and a fermion. This implies
that it is a signature of a dominating interaction between
the quasi-particles. This fact is commonly interpreted as
the failure of a description of the energetically low-lying
physics in terms of quasi-particles.

Considering two dimensional strongly interacting sys-
tems it is shown that they are generically Fermi liquids in
the weak coupling regime [19]. So, qualitatively, two di-
mensional systems are similar to three dimensional ones
in the weak coupling limit. But at strong coupling this
is no longer true. For given generic hopping element t
and interaction strength U the lower dimensional system
is more influenced by strong correlations than the cor-
responding higher dimensional one. This stems from two
effects: (i) The band width being proportional to the coor-
dination number is higher in the higher dimensional case.
(ii) If collective modes, damped or undamped, are formed
their density of states (DOS) at low energies is higher in
lower dimensions. For instance, the DOS ρ(ω) of linear
dispersing modes ω ∝ |k| behaves like ρ(ω) ∝ ωd−1 with
dimension d.

In the above sense, two dimensional strongly interact-
ing systems represent an intermediate situation. Generi-
cally, neither the interactions between the quasi-particles
can be sufficiently described by a Landau function as in
three dimensions, nor is the physics completely dominated
by collective modes formed from bound particle-hole pairs.
Hence, in two dimensions one has to have a theoretical
tool which is able to reconcile both main features: col-
lective modes occur and they are important, but they do
not exhaust all degrees of freedom. There are also quasi-
particles. But their interaction is very important.

The above considerations are the motivation to show
here that it is possible to use continuous unitary transfor-
mations and quasi-particle description for one dimensional
systems to recover the known results. In particular, we will
look at the momentum distribution in the ground state
which differs significantly between Fermi liquids and Lut-
tinger liquids. In Fermi liquids a jump by ZkF , the quasi-

particle weight, occurs at the Fermi level whereas in Lut-
tinger liquids only a power-law behaviour occurs [17,18].
Our investigation is intended to be a test case for the
method, not as a means to obtain new and so far un-
known data. Evidence is provided that in one dimension
the physics has not turned bosonic out of the blue but that
a description in terms of fermionic quasi-particles is still
reasonable even though a description in terms of bosons
is easier. In view of the medium-term aim to describe the
dimensional crossover we consider the fermionic approach
to be a necessary prerequisite.

The paper is set-up as follows. After this Introduction
the method is described in Section 2. Also the model to
which the continuous unitary transformation is applied
is given in detail. In Section 3 the numerical results are
shown and discussed. The comprehensive Discussion con-
cludes the article in Section 4.

2 Method and model

In general, we consider a translationally invariant system
of N interacting fermions

H = NE +
∑

k

εk : c†kck :

+
1
N

∑
kqp

Γkqp : c†k+qc
†
k−qck−pck+p : . (1)

Here c†k (ck) creates (annihilates) a fermion at wave vec-
tor k in momentum space. Note that the parametrization
of the scattering processes is not the conventional one.
Our choice, however, is more apt to represent the inher-
ent symmetries (see below). The fermions appearing are
considered to be spinless, i.e. there is at maximum one
per site and no spin index occurs. The colons : . . . : denote
normal ordering with respect to the non-interacting Fermi
sea. This commonly used classification makes it easier to
trace the effect of the individual terms (cf. Appendix A).
The function Γkqp is the vertex function embodying the
amplitudes for all possible scattering processes.

2.1 Method

The method which we use to analyse the Hamiltonian (1),
is the method of continuous unitary transformations
(CUTs) based on the flow equation approach proposed
by Wegner [10]. The unitary transformation U(�) is
parametrized by the continuous variable � ranging be-
tween 0 and ∞. A given Hamiltonian H(0) is continuously
mapped onto an effective model Heff as � is taken from
zero to infinity. The continuous unitary transformation is
defined locally in � by the antihermitian generator η(�)

d
dl
H(�) = [η(�), H(�)] . (2)

Of course, all other observables O have to be subject to
the same transformations

d
dl
O(�) = [η(�), O(�)] (3)
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Fig. 1. Hamiltonian with a block band structure transformed
into an effective block diagonal Hamiltonian. Each black block
stands for the action of the Hamiltonian in a subspace of the
Hilbert space with a given number of excitations. Let us as-
sume that the uppermost block stands for the vacuum (no
excitation); the next lower block acts on states with one sin-
gle excitation; the next lower block acts on states with two
excitations and so on. In the example depicted the number of
excitations can change at most by two on a single application
of the Hamiltonian. This is the block band structure.

since the expectation values and correlations shall not be
altered by the transformation.

The main task is to determine η(�) = η(H(�)) in a
way that brings the Hamiltonian systematically closer to
a simpler structure. Once the generator is chosen and the
commutator calculated, one obtains a high dimensional
set of coupled ordinary differential equations. These have
to be solved in the limit �→ ∞.

For the choice of η(�) we focus on the case where the
original Hamiltonian H has a so called block band struc-
ture with respect to a certain counting operator Q, i.e. an
operator with a spectrum of non-negative integers. The
operator Q shall be the operator counting the number
of excitations present in the system. The ground state |0〉
ofQ, the so-called quasi-particle vacuum, is the state with-
out any excitation so that

Q|0〉 = 0 (4)

holds. The block band structure occurs if the whole
Hamiltonian H changes the counting operator Q at maxi-
mum by a certain value M <∞. This means that H links
two eigen states |i〉 and |j〉 of Q only if their eigen values qi
and qj differ at most by M : |qi − qj| ≤M . In Figure 1 the
case M = 2 is illustrated.

In view of systems of interacting fermions (1) we
choose Q to be the operator counting the number of quasi-
particles, i.e. the number of particles above the Fermi level
plus the number of holes below

Q =
∑

k

sign(|k| − kF) : c†kck : . (5)

This choice implies that we intend to use ordinary quasi-
particles as the elementary excitations. Generally, we like
to stress that the choice of Q requires some physical intu-
ition or a certain presumption about the problem under
study. The choice of Q can be considered as the choice of
a starting point. Depending on the quality of this choice
subsequent approximations will be more or less reliable.
This point will be discussed below in more detail.

First, however, we turn to the choice of the gen-
erator. For band-diagonal matrices Mielke proposed an

ansatz [20] that was generalized to many-body problems
with block band structures by Knetter and Uhrig [21]. The
antihermitian generator η(�) is chosen such that its matrix
elements are given in an eigen basis of Q by

ηij(�) = sign(qi(�) − qj(�))Hij(�) . (6)

For the interacting fermions as in (1) the conventional
occupation number basis is appropriate.

Since in general the eigen space for a given number of
excitations qi has a large dimension we use the convention
that Aij is not only a single matrix element but the whole
submatrix of A which connects the eigen space belonging
to qj (domain) to the eigen space belonging to qi (co-
domain). With this convention equation (6) becomes a
matrix equation. Inserting equation (6) into the general
flow equation (2) yields

d
dl
Hij = −sign(qi − qj)(HiiHij −HijHjj)

+
∑
k �=ij

(sign(qi − qk) + sign(qj − qk))HikHkj (7)

which is also a matrix equation, i.e. the sequence of the
matrices in the products matters. One can show [20,21]
that (7)
– preserves the block band structure and
– leads to a block diagonal Heff where qi �= qj ⇒
Heff,ij = 0. The condition necessary for these con-
clusions is that the spectrum of the Hamiltonian is
bounded from below which constitutes a natural as-
sumption for physical systems.

The block diagonality of the effective model is equiva-
lent to the commutation of the effective model with Q
[Q,Heff ] = 0.

Furthermore, we show that the ground state of the
system is mapped onto the state with no elementary ex-
citations, i.e. the vacuum |0〉 without any excited quasi-
particles, in the course of the transformation. Let us as-
sume that the ground state is not degenerate. Without
loss of generality the indexing is chosen such that i = 0
refers to the vacuum with q0 = 0. For j = 0 we obtain
from (7)

d
dl
Hi0 = −(HiiHi0 −Hi0E)

+
∑
k �=i0

(sign(qi − qk) − 1))HikHk0 , (8)

where E := 〈0|H |0〉 = H00 is the energy of the vacuum.
Hi0 is a vector that connects the vacuum with other states.
For large � the flow has led the system already close to
block diagonality [20,21]. Then the matrices Hik linking
blocks of different number of elementary excitations are
small quantities so that equation (8) is dominated by the
first term on the right hand side. The products HikHk0

in the sum are smaller by one order in the off-diagonal
matrices. So the asymptotic behaviour is given by

d
dl
Hi0 ≈ (E −Hii)Hi0 . (9)
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Since Hi0 has to tend to zero due to the general conver-
gence [20,21] we deduce from (9) that E − Hii ≤ 0 for
large �. This implies that E is lower in energy than any
state different from the vacuum which is linked to the vac-
uum by a non-zero element Hi0. We interpret the physi-
cal content of this result in the following way. In a block
band diagonal Hamiltonian as illustrated on the left side
in Figure 1 the vacuum is linked to states with a certain
finite number (bounded by M) of elementary excitations.
From (9) we learn that the vacuum is lower in energy than
those states. Generically, this implies that also all other
states which contain an unrestricted number of elementary
excitations lie higher in energy. We conclude that the vac-
uum is indeed the ground state unless a phase transition
takes place.

To illustrate the latter statement in more detail let us
think about a Hamiltonian which is controlled by an inter-
action parameter U such that the vacuum is the ground
state for U = 0 without any transformation. Then the
situation changes gradually and smoothly as U is turned
on so that the ground state is mapped onto the vacuum.
This is true till a singularity occurs, that is a phase tran-
sition. A second order phase transition would be signaled
by the softening – vanishing of the eigen energy – of one
of the excited states (for an example see the single triplet
excitation in Ref. [22]). Technically, this implies that the
convergence of Hi0 as given by equation (9) breaks down
since the expression in the bracket on the right hand side
vanishes. This reflects the physical fact that our approach
will not work beyond the phase transition since there the
original vacuum is no longer a good reference state for the
true ground state. But it is possible to use the approach
until the phase transition is reached and the second order
phase transition can be detected by the vanishing of the
energy of one of the excited states.

First order transitions spoil also the applicability of a
smooth mapping. But they cannot be detected locally. A
first order jump occurs when a completely different state
comes down in energy. Such a completely different state is
built from a macroscopic number of elementary excitations
and will in general not be connected to the vacuum by a
finite element Hi0. This means that the smooth mapping
constructed by the CUT may still work even though a first
order transition has occurred simply because there is no
local connection of the local energy minimum, which is
mapped to the vacuum, to the global one. This concludes
the general considerations about the mapping generated
by the CUT between the ground state and the vacuum of
elementary excitations.

Now we return to the model of interacting fermions
in (1). Inspection shows that this model has a block band
structure with respect to the counting operator (5) of
quasi-particles. If a particle from below the Fermi level
is scattered to a state above the Fermi level two elemen-
tary excitations are created: one hole and one particle.
The inverse process corresponds to the decrement of the
number of quasi-particles by two. If the particle is scat-
tered from below the Fermi level to below the Fermi level
the number of quasi-particles remains constant. The same

is true if the particle is taken from above the Fermi level to
another state above this level. If we consider at maximum
scattering terms built from four fermionic operators, as it
is done in equation (1), then two fermions are scattered so
that the possible changes in the number of quasi-particles
are 0,±2,±4. So there is a natural upper bound M = 4
and the system displays indeed a block band structure.
Note that all the statements so far were independent of
the dimension of the model.

2.2 Model

The explicit model we consider here is a system of one-
dimensional spinless fermions. Haldane used it to explain
the concept of Luttinger liquids [23]. Physical realizations
one may think of are either completely polarized electrons
or anisotropic spin chains which can be rigorously mapped
onto spinless fermions by means of the Jordan-Wigner
transformation [24]. A completely different application is
the description of vicinal surfaces where the hard-core re-
pulsion between different steps is taken into account by
passing to fermions [25].

The model is a tight-binding model where the particles
are distributed over a one-dimensional chain of N sites
with antiperiodic boundary conditions at half filling, i.e.
on average each site is occupied by half a fermion. The
fermions can hop to nearest neighbour sites and there
is a repulsive interaction V between two adjacent fermions

H =
N∑

i=1

[
1
2 (a†i+1ai + h.c.) + V

(
ni+1 − 1

2

) (
ni − 1

2

)]
,

(10)

where a†i (ai ) creates (annihilates) a fermion on site i in
real space. This model is exactly solvable in the form of an
anisotropic spin model. The solution is due to Bethe [26]
and to Yang and Yang [27,28]. More results were found
later [23,29–32]. In the present context it is important to
know that the system is metallic for not too large cou-
plings, namely for V ≤ 1. In this region it is the simplest
realistic tight-binding model displaying Luttinger liquid
behaviour which is why we use it as our test case. At the
value V = 1 a continuous phase transition takes place
into a charge density wave where the fermion density is
staggered. Thus the translation symmetry of the system
is spontaneously broken. This phase displays also a charge
gap and represents hence an insulator. In the present work,
however, our interest is focused on the metallic phase.

Representation

Let us first clarify the notation that we use in the fol-
lowing. Transforming the real-space representation (10)
into momentum-space and normal-ordering of the Hamil-
tonian with respect to the non-interacting Fermi sea yields
a Hamiltonian of the form in equation (1) with the coeffi-
cients

E = − (
1
π + V

2π

)
(11)

εk = − (
1 + 2V

π

)
cos k (12)

Γkqp = V sin q sin p (13)
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in the thermodynamic limit N → ∞. For finite system
sizes N <∞ as used below the dispersion reads

εk = −

1 +

2V
N

∑
|k′|<kF

cos k′


 cos k. (14)

The terms 1
π and V

2π in E correspond to the ground state
energy of the non-interacting system and to the Fock term,
respectively. We are not interested in these leading order
effects but will concentrate on the correlation effects as
they appear in the subsequent orders.

Based on the parametrization chosen in equation (1)
the symmetries and notation properties of the system
manifest themselves in a very concise way in the vertex
function Γkqp

1. hermitecity leads to

Γkqp = Γkpq , (15)

2. inversion symmetry leads to

Γkqp = Γ−k−q−p (16)

3. particle-hole symmetry leads to

Γkqp = Γk+πqp = Γkq+πp+π . (17)

A swap of two neighboured fermionic operators in a
normal-ordered product leads only to an additional mi-
nus sign. Thus there is a redundancy in the nota-
tion : c1c2 . . . := − : c2c1 . . . : which implies that Γkqp is
not uniquely defined by equation (1). This caveat can be
remedied by the additional requirement of the

4. notation symmetry

Γkqp = −Γk−qp = −Γkq−p. (18)

The notation symmetry implies that the momentum de-
pendence of the vertex function is the one given in (13).
Note that in our notation the vertex function Γkqp van-
ishes automatically if fermions are scattered from the
Fermi points to the Fermi points (k = ±π/2 and q, p ∈
{0,±π}). This important fact leads to the property that
the interaction is not a relevant perturbation but only
a marginal one. The CDW does not occur at arbitrarily
small interaction but only beyond a finite threshold. If the
scattering is denoted in the usual way a much more elab-
orate reasoning computing the contribution of the Cooper
pair and the zero sound channel is required to yield the
same result [33,34].

Exploiting the above symmetries the number of non-
zero scattering amplitudes that has to be dealt with is
reduced from N3 to approximately N3

32 .

Exact results

Here we report some exact results to which we will com-
pare our findings.

1. The ground state energy per site in the metallic phase
V < 1 reads [27]

E

N
(V ) =

cosµ
4

− sin2 µ

∞∫
−∞

dx
2 coshπx(cosh 2xµ− cosµ)

,

(19)

where V = cosµ. Equation (19) is dominated by its
linear part −( 1

π + V
2π ) (cf. Eq. (11)), which we will

substract to focus on the correlation part of the energy.
2. We deduce from the dispersion of the anisotropic

Heisenberg model [29] the dispersion of the effective
fermionic model

εk = −
(
π

2µ

)
︸ ︷︷ ︸
v∗
F(V )

cos k, (20)

which we expect after the CUT. In particular, we
use the value of the Fermi velocity v∗F as done previ-
ously [32]. This quantity is also dominated by a rather
trivial linear term 1 + 2V

π (cf. Eqs. (12, 14)) which
we will subtract in order to focus on the correlation
effects.

3. The momentum distribution n(k) in the ground state
cannot be computed directly with Bethe ansatz. But
it is possible to deduce the asymptotic behaviour for
momenta close to the Fermi wave vector kF based on
the representation of the model in terms of bosonic
degrees of freedom [32]. In the momentum distribution
a characteristic signature of Luttinger liquid behaviour
shows up. No finite jump in n(k) exists at k = ±kF but
a power law singularity with non-universal exponent
appears. This singularity is of the form [32] (for more
details, see e.g. [17,35])

n(k ≈ kF) ≈ 1
2 − C1sign(k − kF)|k − kF|α (21)

with

α(V ) =
1

η(V )
+
η(V )

4
− 1 (22)

η(V ) =
π

π − arccosV
(23)

and an undetermined constant C1.

2.3 The continuous unitary transformation

In the section on the method (Sect. 2.1) it was explained
that the block band structure of the system is preserved
under the chosen CUT. This means that the number
of quasi-particles is altered at maximum by 4. It must
be emphasized, however, that this does not imply that
only terms made from four fermionic operators, so-called
2-particle operators1, occur in the Hamiltonian. Even

1 The name stems from the property that the effect of this
operator is to re-distribute two real (not quasi) particles. This
is due to the conservation of the number of real particles.



448 The European Physical Journal B

though the initial Hamiltonian (1) contains only 0-particle
(constants), 1-particle (of the form : c†c :) and 2-particle
terms (of the form : c†c†cc :) the transformation may and
will generate also 3-(and more) particle terms. But these
terms have to fulfill the condition that they change the
number of quasi-particles by no more than ±4.

Let T
(j)
i (�) be the normal-ordered j-particle term

in H(�) which changes the number of quasi-particles by i.
So the general structure during the transformation is

H(�) = T
(0)
0 (�) + T

(1)
0 (�)

+
∑
j≥2

[
T

(j)
+4 + T

(j)
+2 + T

(j)
0 + T

(j)
−2 + T

(j)
−4

]
(�) (24)

and

η(�) =
∑
j≥2

sign(i)T (j)
i (�) . (25)

Note that the 1-particle term cannot change the number of
quasi-particles since the conservation of momentum does
not allow to shift the particle in momentum-space.

Some general analysis is possible. One can study
which combinations of T (j′)

i′ and T
(j′′)
i′′ in [η(�), H(�)] in-

fluence d
dlT

(j)
i . First, the changes in the number of quasi-

particles is additive i = i′ + i′′. Second, the maximum
value of j is

jmax = j′ + j′′ − 1 (26)

due to the properties of the commutator between products
of fermionic operators. Third, the normal ordering yields
also a lower bound for j because the number of possible
contractions is restricted. Contractions in a product made
from normal-ordered factors are possible only between the
fermionic operators from different normal-ordered factors,
see Appendix A. So we are led to [36]

jmin = (27)
1
2

max
{

(j′ + i′) + (j′′ − i′′) + |(j′ − i′) − (j′′ + i′′)|
(j′ − i′) + (j′′ + i′′) + |(j′ + i′) − (j′′ − i′′)|

}
·

It is also possible to derive a set of abstract differ-
ential equations for the coefficients of all possible terms.
But its structure is quite complicated [36]. So a solution of
the complete CUTs seems to be hardly accessible and we
refrain from perusing this route further and turn to a nu-
merical treatment of finite-size systems with N sites. Still
further approximations are necessary because the number
of different j-particle processes grows generically as N j−1.

2.4 Self-similar or renormalizing approximation

We analyse the flow of all terms of the form

T
(0)
0 (�) = E(�) (28)

T
(1)
0 (�) =

∑
k∈[0,2π)

εk(�) : c†kck : (29)

T
(2)
i (�) =

∑
k∈[0,π)

qp∈[0,2π)

Γkqp(�) : c†k+qc
†
k−qck−pck+p : (30)

with i ∈ {0,±2,±4}. Terms involving interactions deal-
ing with more than two particles T (j>2)

i are neglected.
So we proceed as follows. The sum (24) of the terms in
equations (28, 29, 30) represents the Hamiltonian at a
given value of �. The corresponding generator η in equa-
tion (25) contains the same terms. This ansatz is inserted
at the right hand side of the general flow equation (2).
The commutator is computed and the result is normal-
ordered (cf. Appendix A). The 3-particle terms are omit-
ted and the coefficients of the 0-, 1- and 2-particle terms
are compared. In this way, a high dimensional set of ordi-
nary differential equations for the coefficients of the terms
in equations (28, 29, 30) is obtained. These equations are
given in Appendix B. At � = ∞ the parts of the third
term (30) which alter the number of quasi-particles will
have vanished so that only the i = 0 part remains (for
illustration see Fig. 2). At this stage, i.e. at the end of the
transformation, T (0)

0 is the ground state energy, T (1)
0 the

1-particle dispersion and T (2)
0 represents the interaction of

two quasi-particles. The latter does not need to be small.
Since the given structure of the initial Hamilto-

nian H(� = 0) is preserved we call this approximation
“self-similar” in the spirit of the work by G�lazeck and
Wilson [11]. The naming “renormalizing” is based on three
facts. First, on the technical level the coefficients appear-
ing in the initial Hamiltonian are changed, i.e. renor-
malized, in the course of the transformation. Second, the
procedure is non-perturbative since terms are omitted not
because they are of a certain order in the initial interaction
V but because of their structure being 3-(or more) par-
ticle terms. This implies that the couplings kept acquire
infinite orders in V . Third, the generator (6, 25) which we
use here leads to a smooth exponential cutoff exp(−|∆E|�)
of the matrix elements connecting states of different en-
ergy (energy difference ∆E) [20,21]. Thus matrix elements
between energetically distant states are suppressed much
more rapidly than those which are energetically very close
to each other. This is similar to what is done in Wilson’s
renormalization [4] where the degrees of freedom at large
energies are integrated out first.

We illustrate the exponential cutoff for matrix ele-
ments connecting to the ground state. Their asymptotic
behaviour on � → ∞ is governed by equation (9). Let us
assume that the non-diagonal elements Hi0 are already
very small. Then the diagonal energies like E and Hii de-
viate from their asymptotic values only quadratically in
the non-diagonal elements as results from second order
perturbation theory. So in leading order the diagonal ele-
ments can be considered constant in �. Then equation (9)
yields Hi0 ∝ exp(−(Hii − E)�) as stated before.

How can the restriction to the terms in equa-
tions (28, 29, 30) be justified? One argument results from
considering an expansion in the interaction V . The 3-
particle interactions neglected are generated by a com-
mutator of two normal-ordered 2-particle terms which
are of the order of V so that they are of the order V 2.
For our purposes it is important to know in which or-
der the terms kept are influenced by the neglect of
the 3-particle terms. The 3-particle terms can have an
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Fig. 2. Sections of the vertex function Γkqp at k = π
4

as function of q, p ∈ {−π, π} at three values of � (0, 0.3 and ∞) for V = 0.5
and N = 48 sites. The lightest parts are those that change the number of quasi-particles by ±4, the gray parts change them by
±2, the black parts leave it unchanged. The quasi-particle-number changing amplitudes are transformed to zero.

influence on the terms kept only if they are commuted
again with at least a 2-particle term of the order V or
higher. Hence the neglect of the 3-particle terms intro-
duces deviations only in order V 3. This holds for the 1-
and 2-particle terms (29,30). The 0-particle term, which
becomes at � = ∞ the ground state energy, is not changed
by the commutator of a 2-particle and a 3-particle term
since the generated terms cannot be contracted completely
as stated by equation (27). So the deviation in the 0-
particle term engendered by the neglect of the 3-particle
terms is at worst of order V 4. Thus the approximation can
be justified for low values of V .

Another argument, which is more general than a power
counting in the interaction, comes from the structure of
the terms neglected. Let us focus on the 3-particle terms.
Since they may change the number of quasi-particles at
most by 4 they contain at least one annihilator of a quasi-
particle. Since they are normal-ordered this annihilator
appears rightmost. Hence such a term is active only if ap-
plied to a state which contains already some excitations.
Hence the approximation chosen is justified if the system
can be considered a dilute gas of quasi-particles irrespec-
tive of the strength of the interaction between the quasi-
particles. In the course of the transformation virtual pro-
cesses creating and annihilating quasi-particles are more
and more suppressed so that the average concentration of
quasi-particles decreases gradually. Hence towards the end
of the transformation the neglect of 3-(and more) particle
terms is well justified. On the other hand, the 3-(and more)
particle terms are not present in the initial Hamiltonian
(1) so that their neglect is well justified during the first
phase of the transformation as well. Only during the in-
termediate phase there is no general control of the quality
of the approximation. Here one has to focus on the par-
ticular system under study. To assess the quality of the
approximation one may either compare to otherwise avail-
able data on the system (external quality control) or one
may compute some of the terms neglect in order estimate
how large they are (internal or self-consistent quality con-
trol). In the present work we will use the first method and
assess the quality of our findings by comparing them to
the known exact results. Summarizing, the approximation
is well justified if the system can be considered a dilute

gas of quasi-particles independent of the actual interaction
between the quasi-particles.

Finally, we wish to point out an analogy between our
approach and a more standard diagrammatic one. By re-
stricting ourselves to the terms in equations (28, 29, 30)
we are dealing with a 2-particle irreducible vertex function
which is renormalized continuously. The renormalization
equation (see Appendix B) is bilinear in all coefficients.
The terms contributing to ∂�Γ , which are bilinear in the
vertex function Γ , result from the commutation and a sin-
gle contraction of two 2-particle irreducible vertex func-
tions. In this sense our procedure bears similarities to a
1-loop renormalization or to the summation of all parquet
diagrams [37]. The main difference is that our approach
keeps the problem local in time along the renormalization
flow because the transformation is unitary. Hence not fre-
quency dependence enters. We consider this a major ad-
vantage of the CUT approach for numerical application
since much less bookkeeping is required since no frequency
dependence has to be traced.

3 Numerical results

We turn now to the numerical solution of the differential
equations set up in Appendix B. The momentum depen-
dence of all functions is discretized in an equidistant mesh.
The positions of the points of this mesh are chosen such
that no k-point lies precisely at k = ±kF = ±π/2. For N
divisible by 4, this corresponds to antiperiodic bound-
ary conditions. In this way unnecessary degeneracies are
avoided. For large system size the influence of the bound-
ary conditions becomes increasingly unimportant.

For the system sizes (N ≈ 50) that we will be look-
ing at there are about 50,000 coupling constants which
are traced in the set of differential equations. Luckily, the
differential equations are not very sensitive since they de-
scribe the convergence to a static fix point. The numerics
is done by a Runge-Kutta algorithm with adaptive step-
size control. This algorithm is robust but quite laborious
because the differential equations have to be evaluated six
times for each step. Rigorously, the fix point is reached
at � = ∞. In practise, we stop the flow when the relative
change of E and εk falls below 10−6.
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(a) Symmetric replacement.
(b) Symmetric scattering of two particles cre-
ating (annihilating) four quasi-particles.

(c) Changing the average momentum k keep-
ing one scattering process unchanged.

(d) From forward-scattering (q ≈ 0) to
umklapp-scattering (q ≈ π) and back (q ≈ 2π).

Fig. 3. Sections of the vertex-function Γkqp as in Γkqp : c†k+qc
†
k−qck−pck+p :. The pictograms illustrate the scattering processes.

They show the dispersion (solid line), filled dots for the fermions to be annihilated and open dots for the holes where the fermions
are put. The arrows depict how the processes change on varying the momentum. ∆QP denotes the change of the number of
quasi-particles induced by the scattering process. Note that ∆QP �= 0 implies that the amplitude vanishes for � = ∞.

3.1 Illustration of the CUTs

Figure 2 illustrates what the continuous unitary transfor-
mations are doing. The parts of the vertex-function that
are associated with processes that change the number of
quasi-particles are transformed away as � goes to ∞ while
the other part is renormalized. At the end of the transfor-
mation there are discontinuities at the borderlines of the
different parts and some singular kinks if the scattering
processes occur at the Fermi points or if p = q holds.

A more quantitative insight is given by Figure 3 where
one-dimensional sections of the vertex-function Γkqp are
shown.

– Figure 3a depicts Γ0qq for various values of �. These
amplitudes are related to processes where two fermions
at q and −q are first annihilated and then created
again. The shape of the function close to |q| = π/2
can be fitted by Γ0qq ≈ −0.007q2 − 0.266 ln ||q|/π −
0.5| − 0.125. So a logarithmic singularity at π

2 can be
presumed.
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– In Figure 3b the amplitudes of processes are shown
where two fermions are taken from q and −q and put
at π − q and −π − q. All these processes change the
quasi-particle number and, hence, have to vanish for
� → ∞. The processes near the Fermi wave vector
q ≈ π

2 are decreasing very slowly.

– For the plots in Figure 3c we fix one shift of a fermion
from below the Fermi level to an energy above it. The
shift of the other fermion is varied. Here, different
changes in the number of quasi-particles are possible.
There are regions where the amplitudes vanish and
others where they are only renormalized. The process
at k = π

2 is apparently different. It corresponds to
the exchange of the two particles. At present, we can-
not judge whether this difference will be relevant in
the thermodynamic limit. It is an interesting question
whether it retains a finite weight for N → ∞.

– In Figure 3d we show the evolution of a scattering
event from pure exchange at q = 0 at the right Fermi
point over forward-scattering for small positive values
of q to umklapp-scattering at q = π. One realizes that
the scattering amplitudes at q = 0 and at q = π
are particularly enhanced by the renormalization. It
seems totally inappropriate to approximate the scat-
tering amplitudes as being constant for small momen-
tum (q ≈ 0) or for large momentum (q ≈ π) because
the points q = 0 and q = π appear to be decisively
different from the scattering in their vicinity. This ob-
servation makes the question whether a continuum de-
scription is quantitatively applicable an interesting is-
sue for future studies.

3.2 Convergence

General statements on the convergence of the CUT ap-
proach chosen are possible [20,21]. But they do not en-
sure that the method works for macroscopically large sys-
tems. Additionally, the unavoidable use of approximations
may lead to the break down of convergence. So we investi-
gated empirically up to which value of the interaction Vcrit

the CUT works. This value depends on the system size N
or the density of the discretization mesh, respectively. If V
is larger than Vcrit.(N) all couplings are diverging at a cer-
tain � and the solution of the differential equations cannot
be continued asymptotically to ∞. Furthermore, Vcrit.(N)
is decreasing as N is growing. In addition, numerical prob-
lems occur at system sizes N > 52 and V close to Vcrit.(N)
due to accumulated inaccuracies. This can be seen in the
unsystematical behaviour of Vcrit.(N) above N = 52 and
in the unphysical shape of e.g. the dispersion for V close
to Vcrit.(N) in Figure 4. On the other hand, the decrease
of Vcrit.(N) is very systematic as long as N ≤ 52 holds. It
can be approximated very well by a linear dependence

Vcrit.(N) ≈ 9.06/N + 0.75, (31)

which leads to an extrapolated value in the thermody-
namic limit N → ∞ of Vcrit.(∞) ≈ 0.75. We conclude

Fig. 4. Interaction values above which the approximation
breaks down because of loss of convergence. Filled symbols
stand for numerically stable runs, open symbols (N ≥ 52) for
runs where numerical inaccuracies spoil the convergence. The
dashed line extrapolates the numerically reliable results (see
Eq. (31)).

that it is possible to study the metallic phase of the sys-
tem and that the conclusions drawn from the finite-size
calculations are also relevant for the thermodynamic limit.
A description of the transition to the insulating phase is
presently not possible.

The case N=4

Some insight on the cause for the loss of convergence can
be obtained in the simple case of four points in momentum
space, which is analytically solvable with and without ap-
proximation. The analytic solution is simple because the
quasi-particle vacuum |ψ0〉 is connected by the interaction
only to the state where both fermions are excited |ψex.〉.
Thus one has to diagonalize a 2 × 2 matrix which can be
done easily directly or using the CUT.

Our approximation, however, is dealing with operators
and not with matrix elements. The state |ψex.〉 involves
four quasi-particles – two holes and two excited particles.
In the approximation 3- and 4-particle terms are neglected
so that the energy of the excited state is incorrect. Indeed,
the gap between the ground state and the excited state
is under-estimated2. It even closes for V ≥ √

8 and the
couplings diverge before reaching � = ∞. Thereby, it is
shown that the approximation may spoil the applicability
of the approach.

3.3 Ground state energy per site

In Figure 5 we plot the shape of the non-linear lower-
ing of the ground state energy, i.e. the correlation part
of the ground state energy, for various system sizes N as
obtained by CUT. The ground state energy diverges to
negative values close to Vcrit.(N). For V smaller than the
extrapolated value Vcrit.(∞) all systems show nearly the
same dependence on the interaction V .

2 But the deviation occurs only in fourth order in V .
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Fig. 5. CUT results for the correlation part, i.e. beyond linear
order, of the ground state energy per site for various system
sizes N .

Fig. 6. Comparison of the CUT results (N = 48) for the
correlation part of the ground state energy per site with the
exact thermodynamic result.

The case N = 48 is compared to the exactly known
thermodynamic result [27,28] in Figure 6. The quantita-
tive results are very close to each other for quite a large
region of V . Even for V = 0.5 the relative difference is
less than 1%. Only as V approaches Vcrit.(48) = 0.9361
the approximate ground state energy is diverging very fast
to −∞.

3.4 Dispersion and renormalized Fermi velocity

At the end of the transformation, i.e. at � = ∞, when
the effective Hamiltonian has reached block diagonality
only scattering processes are left which leave the num-
ber of quasi-particles unchanged. Then εk is the renor-
malized 1-particle dispersion. This means that in the ef-
fective model after the transformation it is possible to
add a single quasi-particle (hole or particle) to the ground
state such that the resulting state is an exact eigen state
because there is no other quasi-particle to interact with.

Note that this statement is not in contradiction with
the widely known fact that the single-particle propaga-
tor G(k, ω) of a Luttinger liquid does not display quasi-
particle peaks [17,35,38,39] because the single-particle
propagator G(k, ω) refers to adding or taking out a

Fig. 7. Renormalized dispersions from the CUT calculation for
N = 48. The results for V = 0.03, 0.06, 0.09 . . . , 0.9 are shifted
with respect to each other in order to yield a three-dimensional
view on the evolution of the dispersion.

fermion before any transformation. It is an interesting is-
sue, yet beyond the scope of the present work, to apply
the CUT (3) to the creation and annihilation operators in
order to recover the usual Luttinger liquid result in the
framework of the CUT renormalization.

Figure 7 shows the evolution of the dispersion for
N = 48 on increasing V . The dispersion behaves like a
cosine-function with a renormalized Fermi velocity as ex-
pected from the exact result. For V close to Vcrit.(48) (at
about V = 0.7) there are kinks emerging. We reckon that
these kinks represent spurious features induced by accu-
mulated numerical inaccuracies for the same reasons for
which the convergence is hampered for large system sizes.

Renormalized Fermi velocity

By fitting the function −v∗F cos(k) to the calculated dis-
persions we obtain results for the renormalized Fermi ve-
locity v∗F as function of the interaction V . These values are
dominated by the linear Fock term 1+ 2V

π or its finite-size
equivalent in (14), respectively. In order to yield a better
resolution of the influence of correlations we substract the
constant and linear terms. The remainder v∗F−lin is plot-
ted in Figure 8. It is compared to the exact result [29],
the exact quadratic term V 2 and the result obtained from
bosonization (cf. Appendix C). The shape of the curves is
basically the same. The CUT result is too small (in mod-
ulus) compared to the exact results. For small V this is
mainly due to a finite-size effect as comes out from an
extrapolation N → ∞. Again, the CUT approach is less
reliable close to the critical interaction value Vcrit(N).

Note that the bosonization results fits less well to the
exact result than does the CUT result. This is due to
the fact that in bosonization only the processes infinitely
close to the Fermi points are considered. The deviation
between the dash-dotted second order curve from the ex-
act results reveals that higher order terms are important
as well. They are partly captured by the CUT procedure.
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Fig. 8. Comparison of the non-linear correlation part of the
Fermi velocity as obtained for N = 48 by the CUT with the
exact thermodynamic result, the exact quadratic order V 2 and
the result obtained from bosonization.

3.5 Momentum distribution

Last but not least we analyze the momentum distribu-
tion n(k) in order to show that Luttinger liquid be-
haviour is retrieved. The standard approach to do so would
be to transform the operator c†kck according to equa-
tion (3) [10,40]. Here, however, we use a simpler approach
suitable for static expectation values and correlations. The
value E∞ = E(� = ∞) is the ground state energy within
our approximation because the block diagonal effective
Hamiltonian H(� = ∞) does not contain processes excit-
ing the vacuum any more. First order perturbation theory
shows straightforwardly that functional derivation of E∞
yields the expectation value n(k)

dE∞
dεk

=
〈

dH
dεk

〉
= 〈: c†kck :〉 =: n(k). (32)

In the numerical treatment the functional derivation can
be easily realized by approximating the ratio of infinites-
imal differences by the ratio of small finite differences.
Hence no serious extension of the algorithm is needed to
compute the momentum distribution. For relative varia-
tions of εk around 10−3 the ground state energy E∞ is lin-
ear in these variations within an accuracy of about 10−5.
So n(k) can be determined to this accuracy. In Figure 9
the momentum distribution (symbols) for N = 48 and
V = 0.6 obtained in this way is depicted.

Due to the discretization n(k) can be computed only
for a finite set of points. At first sight, a jump seems to
dominate at the Fermi wave vector π/2. But a discretized
power law distribution displays also a jump – in partic-
ular if the exponent is small. In order to understand the
nature of the distribution a quantitative analysis is re-
quired. Hence we fit the distribution obtained to two func-
tions, one being appropriate for describing a Luttinger liq-
uid [17,32] ∣∣n(k) − 1

2

∣∣ ≈ C1(∆k)α + C2∆k (33)

Fig. 9. Momentum distribution as obtained by CUT for V =
0.6 and 48 sites. Lines are interpolations to the three points
closest to the Fermi wave vector assuming Luttinger (33) or
Fermi behaviour (34), respectively.

the other being appropriate for describing a Fermi liq-
uid [41]

∣∣n(k) − 1
2

∣∣ ≈ 1 + ZkF

2
+ C1 ln(∆k)∆k + C2∆k (34)

with ∆k := |k − kF|. For both possibilities three free pa-
rameters (α, C1, C2 or ZkF , C1, C2, respectively) are de-
termined. In Figure 9 the parameters are fixed to inter-
polate the three points closest to the Fermi wave vector.
Another way is to perform a least-square fit; the result-
ing curves are shown in Figure 3 in reference [13]. In both
analyses, the qualitative result is the same. The Luttinger
fit describes our data much better than the Fermi fit. We
conclude that our data describes rather a power law be-
haviour than a jump. We cannot exclude, however, a be-
haviour comprising a power law behaviour and a jump.
But there is no reason to believe that such a behaviour
should occur.

Due to the small exponents α occurring and the re-
stricted system sizes the power law cannot be distin-
guished reliably from a logarithmic behaviour or from a
function of some logarithm in |k − kF|. Note, however,
that the simple logarithm found in reference [10] is not
likely to occur since we do not transform the observable
in leading order only. Infinite orders of the interaction V
contribute to the ground state energy and hence to the
derivative (32).

In order to push the analysis one step further we com-
pare the exponent α resulting from the fits to the exact
one. The points in the vicinity of the Fermi wave vector
are more influenced by finite size effects [42]. Eventually,
we choose the exponents coming from least-square fits. In
Figure 10 they are compared to the exact values, to the
second order result and to the values coming from the di-
rect application of bosonization (cf. Appendix C). Clearly,
the CUT results agree very well with exact data for not
too large values of V < 0.6. From the comparison to the
exact second order term V 2 one sees that the CUT data
describes the full exact result better than the second or-
der term alone. We infer that the CUT data reproduces
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Fig. 10. Luttinger exponent α(V ) as obtained from least-
square fits of the CUT momentum distributions.

the third order term also. This does not come as a sur-
prise since we showed above that the ground state energy
is exact including the V 3 term. Thus any quantity derived
from it will also be exact in the same order. So the mo-
mentum distribution n(k) and hence the exponent α have
to be exact up to and including V 3.

The comparison to the bosonization result in Figure 10
is also instructive. By construction the bosonization result
captures only the physics in an infinitesimal vicinity of the
Fermi points. There no umklapp scattering is possible as
can be seen from equation (13) or from the analyses in ref-
erences [33,34] (cf. discussion after Eq. (18)). For this rea-
son, the bosonization fails to detect any precursor of the
incipient phase transition to the CDW occurring at V = 1.
The dependence of the α obtained from bosonization is
hence much smoother than the exact result. The CUT re-
sult includes scattering at all momenta. So precursors of
the phase transition can be captured. Unfortunately, the
breakdown of the approximation as used here makes fur-
ther statements on the description of the phase transition
impossible.

4 Discussion

4.1 Conclusions

We presented general arguments in favour for a renor-
malization treatment of interacting fermionic systems by
means of a continuous unitary transformation (CUT). The
precise choice of the unitary transformation, i.e. the choice
of its infinitesimal generator, was motivated and the gen-
eral properties of the transformation were elucidated. The
method was illustrated for a model of one-dimensional, re-
pulsively interacting fermions without spin at half-filling.
The technical considerations for the explicit calculation
were given. An important point was a consistent, non-
redundant notation (18) which made the crucial cancella-
tion between the Cooper pair and the zero sound channel
manifest. Results were obtained for the correlation part of
the ground state energy, for the 1-particle dispersion, for
the 2-particle vertex function and for the static momen-

tum distribution. The findings were compared to exact
results as far as possible. The agreement was very good.

The CUT employed uses standard quasi-particles as el-
ementary excitations. So it represents an explicit construc-
tion of Landau’s mapping of the non-interacting quasi-
particles to the elementary excitations of the interacting
system [13]. Note that the existence of such a smooth
connection is not surprising since already the bosoniza-
tion identity for fermionic field operators [23,17] repre-
sents such a smooth link. In the continuum limit, a spin-
less model with or without interaction can be mapped to
a single mode boson model with linear dispersion. Hence,
it is possible to link the interacting model via the bosonic
model to the non-interacting one (see also the remark on
Kehrein’s results [43,44] below). We take the success of our
approach as corroborating (numeric) evidence that Lan-
dau’s mapping exists in one dimension. In particular, the
numerical findings of the momentum distribution n(k) in-
dicate that important features of Luttinger liquids could
be retrieved. Signatures of a Luttinger-type power law be-
haviour at the Fermi points were found, though hampered
by the accessible restricted system sizes.

We are convinced that CUTs represent a power-
ful renormalization scheme for low-dimensional systems.
Since no states are eliminated the effective Hamiltonian
obtained at the end of the CUT allows to compute spatial
(shown here) and temporal correlations (for an example,
see reference [14]) at small and at large wave vectors or
excitation energies, respectively. So, in principle, no in-
formation is lost in the course of the renormalization, in
contrast to, for instance, Wilson’s renormalization [4]. Of
course, approximations which are necessary in practical
calculation will introduce some uncertainties. Recent de-
velopments in renormalization approaches by integrating
out degrees of freedom allow also to compute high en-
ergy features if the observables are equally subject to the
flow, see for instance the appendix in reference [45]. A ma-
jor advantage of the CUT approach is that no frequency
dependence needs to be kept. This represents an impor-
tant facilitation for the actual numerical realization of the
renormalization.

4.2 Connections to other work

Life-time of excitations

If a complete or partial diagonalization is obtained by a
continuous unitary transformation the eigen values are by
construction real. So the excitations are well-defined in en-
ergy and they do not display a finite life-time. This state-
ment appears almost trivial if one bears in mind only the
mathematical linear algebra. From the physics points of
view, however, one might be surprised since one is used to
that excitations, for instance quasi-particles, have a finite
life-time in many-body systems. This comes about because
no true eigen state are considered when an excitation of
finite life-time is studied.

For instance, adding a fermion to the ground state
of an interacting fermion system by application of a
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simple creation operator generically does not yield an
eigen state but a sophisticated superposition of true eigen
states. This looks as if the “true” fermion added decayed
because its spectral function displays a peak of some finite
width. Technically, one still uses the normal single-particle
basis but the self-energy Σ(k, ω) acquires a finite imagi-
nary part which represents the fact that the single fermion
is coupled to states with one or more particle-hole pairs.
One may view εk + Σ(k, ω) as an imaginary eigen value
of the single particle state. But the single particle state is
not an eigen state of the underlying Hamiltonian.

The description using a unitary transformation de-
signed to diagonalize the original Hamiltonian is different
from the standard approach in physics sketched above.
One tries to find real eigen vectors and eigen values. Broad
spectral functions do not occur because of imaginary eigen
values but because of the superposition of eigen vectors.
Kehrein and Mielke coined the expression that “the ob-
servables decay” and described the phenomenon in the
context of dissipation [46].

So it is not surprising that, after the CUT is applied
to one-dimensional fermions, we find quasi-particles with
infinite life-time. These are quasi-particles after the trans-
formation. The fermion before the transformation will de-
cay into states with additional excited particle-hole states.
So there is no contradiction. In this context it is inter-
esting to note that there is a formulation of diagram-
matic perturbation theory which uses also infinite life-
time excitations [47,48]. In this formulation the fermionic
one-particle states acquire a renormalized eigen energy
due to the interaction. The change of the eigen energy
ε → ε′ leads to a change in the occupation number
(1 − exp(−β(ε− µ)))−1 → (1 − exp(−β(ε′ − µ)))−1) [47].
So this approach corroborates that a description of the
physics in terms of non-decaying quasi-particles is possi-
ble. The question how dynamic correlations can be de-
scribed is not discussed in references [47,48].

CUTs as numerical approach

While the present work was being finished White [15] pro-
posed a numerical scheme which is very similar in spirit to
what we did here. Besides discrete transformations which
work less efficiently, a continuous unitary transformation
is used with an infinitesimal generator with matrix ele-
ments

ηij(�) =
1

Ei(�) − Ej(�)
Hij(�), (35)

where a 1-particle basis is used, i.e. a basis in which the 1-
particle part of the Hamiltonian is diagonal. The 1-particle
eigen energies are given by Ei. The approach is applied to
a small molecule, namely H2O, and the ground state en-
ergy is computed very reliably by rotating the original
ground state to a Fermi sea, i.e. the quasi-particle vac-
uum. That means that states which are partially occu-
pied n ≥ 0.5 are mapped to filled states and states which
are partially empty are mapped to empty states. This is

what we did in our present work as well. So reference [15]
provides an independent investigation of the power of con-
tinuous unitary transformations for a different fermionic
system. In addition, it is investigated in reference [15] to
eliminate a number of states which lie far off the Fermi
level without diagonalizing the problem completely by the
continuous transformation. The remaining effective prob-
lem, which is simplified considerably due to the reduction
of the Hilbert space, is then solved by standard diagonal-
ization algorithms, e.g. DMRG. Also this approach proved
to be very powerful.

Choice of CUT

In reference [10], Wegner investigated a one-dimensional
n-orbital model in the continuum limit by a continuous
unitary transformation. The main difference in the unitary
transformation is the use of a generator different from the
one in equation (6), namely

η = [HD, H ] (36)

where HD is the part of the Hamilton one wants to keep.
The approach succeeded when HD comprised all terms
that do not change the number of quasi-particles. Hence
this renormalizing scheme is very similar to the one used in
the present work. It would be an interesting issue to com-
pare both approaches quantitatively in a simple model.
There are arguments in favour for both of the two ap-
proaches.

First, the choice (6) has the advantage that the kind
of terms that are generated is restricted: the block band
structure is preserved. Second, off-diagonal terms chang-
ing the number of quasi-particles are eliminated even if
they are not accompanied by a change of the 1-particle
energies, i.e. certain degeneracies are lifted. Third, a sup-
pression of off-diagonal parts starts already linearly in
the differences of the diagonal parts. A weakness of the
choice (6) is given when there are scattering processes
which increment the number of quasi-particles but de-
crease the 1-particle energies. In this case, the correspond-
ing amplitudes are first enhanced before the decrease to
the end of the transformation. Due to the necessary trun-
cations it may be difficult to control the quality of the
approximation during the stage of enhancement.

On the other side, the choice (36) is firstly very ro-
bust since off-diagonal terms are always suppressed due
to the fact that the energy difference occurs squared [10].
Second, one does not need to know explicitly the eigen
basis of HD. The squares are generated automatically by
the double commutator when equation (36) is combined
with equation (2). Yet these two commutators must also
be computed which might be tedious. Another weakness
arises when large-scale degeneracies spoil the method by
stopping the renormalization prematurely. For instance,
the vanishing of η implies the stop of the flow but guaran-
tees only that there is a common basis set of HD and H ,
not that H is diagonal. So the conservation of the number
of quasi-particles is not ensured by the choice (36).
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Summarizing the comparison of the choices (6,36) we
reckon that (6) works better if the number of excitations
correlates well with the energy. If this is not the case, the
robustness of (36) may be preferable. Note that there are
still completely different generators conceivable [49]. For
example, one can use in a basis of 1-particle states

ηij(�) = 0 if qi = qj

ηij(�) = sign(Ei − Ej)Hij otherwise (37)

where in case of degeneracy Ei = Ej the energy of the
state with more excitations is assumed to be infinitesi-
mally higher. Such an approach captures advantages of (6)
while avoiding its disadvantage. Further investigations of
these issues are certainly called for.

Fermionic excitations

The fact that we treat a system of interacting one-
dimensional fermions in its Luttinger liquid phase without
using explicitly collective bosonic modes might be surpris-
ing. Yet it is not uncommon that an interacting system is
suitably described (after certain transformations) by free
or nearly free fermions. As an example we quote the work
by Kehrein who succeeded to map a sine-Gordon model by
a sequence of continuous transformations onto a model of
free fermions [43,44]. Indeed, Kehrein’s mapping accom-
plishes this aim for a broader range of parameters than
previous renormalization treatments. The neglect of in-
teractions between the excitations viewed as elementary
is a fairly severe approximation for β2 < 4π where the
breathers, i.e. bound states, are known to occur [50]. Their
description requires the inclusion of the interaction be-
tween elementary excitations.

Landau’s Fermi liquid

Finally, we wish to comment on the use of a Landau’s
Fermi liquid description in terms of quasi-particles for
one-dimensional systems [13]. The possibility and the
power of such a description has been noted previously
by Carmelo et al. [51] in the framework of the Bethe
ansatz solution of the one-dimensional Hubbard model.
Carmelo and coworkers use the spinons and holons as
they arise in the Bethe ansatz solution as pseudo-particles.
Then an approximate treatment for the spatial and tem-
poral [52] correlations is built by describing the excitations
as small deviations from the ground state distributions of
these pseudo-particles. In this sense, the concept of Lan-
dau’s Fermi liquid is generalized to one dimension. The
author emphasize, however, that the pseudo-particles can-
not be smoothly linked to the quasi-particles of the non-
interacting solution. In this point, a clear difference to our
finding here and in reference [13] occurs. We argue on the
basis of our numerical results that a smooth mapping be-
tween the interacting and the non-interacting excitations
exists even in one dimension. The existence of such a map-
ping as long as the system remains massless can already

be deduced from bosonization. Since the interacting and
the non-interacting model can be mapped to a model of
free linear dispersion bosons (discarding Umklapp scatter-
ing) they can also be mapped to each other. By means of
the CUT we constructed such a mapping explicitly.

The generalized Landau liquid in references [51] relies
on the Bethe ansatz solution of the one-dimensional Hub-
bard model. Hence it may be that the integrability is a
prerequisite for the generalized Landau liquid. In our cal-
culation in contrast, the integrability of the model studied
does not play a rôle other than providing a rigorous bench-
mark. But so far, we have not considered the spinful case.
Its investigation by CUTs is certainly called for.

4.3 Outlook

A comprehensive summary is given in Section 4.1. Here
we point out in which directions further work is required.
In view of the numerical nature of the present work, an
analytical treatment would be helpful. There is still a cer-
tain gap between the analytical result of a logarithmic di-
vergence for the momentum distribution obtained in ref-
erence [10] and the numerical results we found. For an
analytical treatment the models to be considered have to
be simplified further. Spin, however, should be included in
order to enlarge decisively the class of systems which can
be described.

Another very interesting issue is the computation of
dynamical quantities like the local spectral function A(ω)
or the momentum resolved spectral function A(k, ω). In
the framework of standard renormalization such investiga-
tions are presently carried out [53]. The dynamical quan-
tities are of interest to see theoretically to which extent
and to which accuracy they can be computed at all en-
ergies and momenta. For the explanation of experimen-
tal data the spectral functions are of utmost importance.
It is this objective which requires in particular to go be-
yond the asymptotic regime of very small energies and
momenta [54]. For gapful spin systems dynamical quan-
tities have already been computed successfully [14]. The
results agree very well with experiments and render deeper
insight in the underlying physics [55,56].

In order to go beyond one-dimensional systems, mod-
ified generators have to be investigated, see e.g. [49]. The
pros and cons of the choices used presently were briefly
discussed in the preceding section. The issue of the opti-
mum generator represents a longer-lasting question since
the answer depends certainly on the model to be studied.

It is a pleasure for us to acknowledge interesting and
helpful discussions with N. Grewe, S. Kehrein, P. Horsch,
E. Müller-Hartmann, M. Salmhofer, F. Wegner, S.R. White
and P. Wölfle. This work has been supported by the Deutsche
Forschungsgemeinschaft through SP 1073 and through SFB
608.
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Appendix A: Normal-ordering

Normal-ordering [57] denoted by colons : A : is a stan-
dard procedure which is explained at length in the text
books [58]. So we recall here only the gist of it which is
technically relevant for our calculation. For further details
we refer the reader to the concise script by Wegner [59].

Considering a product Xn of n fermionic operators it
is a priori not clear on how many particles this operator
really acts. It looks as if it acted on n fermions. But a
part of this action may be redundant in the sense that
it can be expressed also by an operator Ym with m < n.
This is indeed the generic situation. A point of reference
is needed in order to be able to define how many particles
are involved in a certain process. Given the ground state
of a 1-particle Hamiltonian3 the normal-ordering ensures
that the normal-ordered n operator does not contain parts
which can be viewed as action of an operator with less
fermionic factors. This is the physical content of

〈: Pn :: Qm :〉 = 0 for n �= m (38)

as derived for normal-ordered terms [59].
Technically, a usual product of m fermionic opera-

tors ak is expressed in terms of normal-ordered terms as

ak1ak2 . . . akm =

: exp


∑

k,l

Gkl
∂2

∂aright
l ∂aleft

l


 ak1ak2 . . . akm :, (39)

where Gkl is the contraction 〈akal〉. The superscripts ‘left’
and ‘right’ indicate that in the double derivatives only
pairs are taken where aleft

k is a factor to the left of aright
l .

To obtain the correct signs the ‘left’ derivation must be
taken before the ‘right’ excitation. Equation (39) stands
for the known procedure that a product is normal ordered
by writing down the sum of terms with all possible num-
bers and sorts of contractions. The inverse relation is given
simply by

: ak1ak2 . . . akm :=

exp


−

∑
k,l

Gkl
∂2

∂aright
l ∂aleft

l


 ak1ak2 . . . akm . (40)

Combining equations (39, 40) leads to the useful expres-
sion for products of normal-ordered terms : A(a) : and
: B(a) :

: A(a) :: B(a) :=: exp


∑

k,l

Gkl
∂2

∂bl∂al


A(a)B(b) :

∣∣∣
b=a

(41)

where the superscripts ‘left’ and ‘right’ are no longer
needed due to the sequence of factors in the product. In

3 The formalism works identically for finite temperatures
with respect to the statistical operator of a 1-particle Hamil-
tonian.

practice, equation (41) means that for the normal-ordering
of a product of already normal-ordered factors not all con-
tractions need to be considered. Only those contractions
matter where the two fermionic operator do not come from
the same factor. This is easy to understand since the con-
tractions between fermionic operators from the same fac-
tor are already accounted for by the normal-ordering of
each factor separately.

In order to determine the differential equations re-
sulting from equation (2) commutators of normal-ordered
terms must be computed. To do this without passing
by non-normal-ordered expressions an extension of equa-
tion (41) to commutators is particularly useful. We derived
and checked the identity

[: A(a) :, : B(a) :] =

: exp


∑

k,l

Gkl

(
∂2

∂aright
l ∂bleftk

+ ∂2

∂bright
l ∂aleft

k

)


× [A(a), B(b)] :
∣∣∣
b=a

, (42)

where the commutator is computed using the anticommu-
tators {ak, bl} := {ak, al}. Equation (42) means that one
can first compute the commutator as usual, but remem-
bering whether the fermionic operator comes from A or
fromB. Then normal-ordering is achieved by writing down
the terms with all possible contractions between pairs of
fermionic operators where one comes from A and the other
from B. In this way, the computation of the actual gen-
eral flow equation (2) becomes a task which is not too
demanding.

Appendix B: The self-similar CUTs

In the self-similar approximation we compute[
T

(0)
0 (�) + T

(1)
0 (�) +

+2∑
−2

T
(2)
2i (�),

+2∑
−2

sign(i)T (2)
2i (�)

]
(43)

neglecting the arising T (3)
i terms. The change in the num-

ber of quasi-particles for the expression
Γkqp : c†k+qc

†
k−qck−pck+p : is given by Skqp as defined by

Skqp = sign(nk+p + nk−p − nk−q − nk+q) , (44)

where we use nk for the momentum distribution of the
unperturbed Fermi sea since this is the quasi-particle vac-
uum to which we are mapping the ground state. (The ac-
tual momentum distribution is denoted n(k)). With these
definitions we calculate the commutator using normal-
ordering as explained in Appendix A. Then we compare
the coefficients of the various terms (0-particle, 1-particle
and 2-particle terms) and determine in this way the set of
differential equations.
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B.1 Ground state energy per site

The differential equation of the ground state energy per
site depends only on the commutator [T (2)

±4 , T
(2)
∓4 ] where all

fermionic operators are contracted. There are four differ-
ent ways to combine the operators for the complete con-
tractions. But all of them lead to the same expression if
one uses the symmetries equations (15–18). Finally one
obtains

d
dl
E

N
=

8
N3

∑
k∈[0,π)

qp∈[−π,π)

(1 − 2nk+p)nk+q nk−q Sk,q,p Γ
2
k,q,p.

(45)

B.2 Dispersion

For the 1-particle term, the dispersion, one has to take
all combinations of three contractions into account that
occur in [T (2)i, T

(2)
−i ] with i ∈ {0,±2,±4}. One obtains 16

different parts that turn out to be identical. In order to
avoid double-counting one of the free momenta must be
restricted to [0, π) or the sum must be divided by two. So
one obtains finally

d
dl
εk =

8
N2

∑
qp∈[−π,π)

((1 − 2nk+q−p)nk−2q + nn+p−qnn−p−q)

×Sk−qqpΓ
2
k−qqp. (46)

B.3 Vertex function

For the vertex function Γkqp there are two commutators to
calculate: [T (2)

i , T
(2)
j ] (i, j ∈ {0,±2,±4}) with all possible

combinations of two contractions and [T (1)
0 , T

(2)
j ] with all

possibilities of a single contraction. To keep the notation
short, we define

Φkqp|KQP := (Skqp − SKQP )ΓkqpΓKQP . (47)

The differential equation for the flow of Γkqp then reads

d
dl
Γkqp = (εk+p + εk−p − εk−q − εk+q)SkqpΓkqp

+
1
N

∑
Q∈[−π,π)

4nQ

×
{
Φ k+q+Q

2
k+q−Q

2
k−q−Q

2 −p|k+p+Q
2

k−p−Q
2 −q k+p−Q

2

+Φ k−q+Q
2

k−q−Q
2

k+q−Q
2 +p| k−p+Q

2
k+p−Q

2 +q k−p−Q
2

−Φ k+q+Q
2

k+q−Q
2

k−q−Q
2 +p| k−p+Q

2
k+p−Q

2 −q k−p−Q
2

−Φ k−q+Q
2

k−q−Q
2

k+q−Q
2 −p|k+p+Q

2
k−p−Q

2 +q k+p−Q
2

}
+2(1 − 2nQ)Φkq(Q−k)|k(Q−k)p . (48)

Note that the appearance of four Φ-terms is due to the
fact that we denote the scattering processes in the Hamil-
tonian (1) in a notation symmetric way (18). A naive com-
parison of coefficients would lead only to one of the four

terms. The other three come into play if one requires that
d
dlΓkqp fulfills (18). As explained in the main text, the
notation obeying (18) ensures that a maximum number
of cancellations are dealt with explicitly. This is advanta-
geous on the numerical as well as on the conceptual level.

Appendix C: Bosonization of the model

We employ a constructive bosonization by linearizing the
dispersion on both branches (r = +1 ↔ right branch,
r = −1 ↔ left branch)

εk,r = r
(
1 + 2V

π

)
(k − rkF). (49)

Furthermore, the bare interaction vertex (13) is evaluated
with all momenta being taken at the Fermi points ±kF.
The corresponding scattering strengths take the value
±V . Following reference [17] one can then determine the
renormalized Fermi velocity as

v∗F(V ) =
(
1 + 2V

π

) √
1 −

(
2V

π+2V

)2

(50)

and the exponent α occurring in the momentum distribu-
tion from equation (22) and

η0(V ) =
1
2

√
2π

2π + 8V
· (51)
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